Angles in metric and normed linear spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Metric Characterization of Normed Linear Spaces

Let X be a linear space over a field K = R or C, equipped with a metric ρ. It is proved that ρ is induced by a norm provided it is translation invariant, real scalar “separately” continuous, such that every 1-dimensional subspace of X is isometric to K in its natural metric, and (in the complex case) ρ(x, y) = ρ(ix, iy) for any x, y ∈ X.

متن کامل

Remotality and proximinality in normed linear spaces

In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.

متن کامل

Basic Properties of Metric and Normed Spaces

1 Definitions and Examples 1.1 Metric and Normed Spaces Definition 1.1. A metric space is a pair (X, d), where X is a set and d is a function from X ×X to R such that the following conditions hold for every x, y, z ∈ X. 1. Non-negativity: d(x, y) ≥ 0. 2. Symmetry: d(x, y) = d(y, x). 3. Triangle inequality: d(x, y) + d(y, z) ≥ d(x, y) . 4. d(x, y) = 0 if and only if x = y. Elements of X are call...

متن کامل

Normed Ordered and E-Metric Spaces

In 2007, Haung and Zhang introduced the notion of cone metric spaces. In this paper, we define an ordered space E, and we discuss some properties and examples. Also, normed ordered space is introduced. We recall properties of R, and we discuss their extension to E. We introduce the notion of E-metric spaces and characterize cone metric space. Afterwards, we get generalizations of notions of con...

متن کامل

On Linear Spaces Which May Be Rendered Complete Normed Metric Spaces

In this paper, we obtain a characterization of linear spaces which may be normed so as to become complete, linear, normed metric spaces. In this connection, K. Kunugui and M. Fréchet have shown that every metric space S is isometric with a subset of a complete, linear, normed metric space. I t follows from our result that if the cardinal number of 5 is the limit of a denumerable sequence of car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1976

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-34-2-209-217